El equipo, encabezado por Julián Gargiulo, investigador del Conicet, y colaboradores de la Universidad Nacional de San Martín (Unsam) y la Universidad de Munich, ha logrado diseñar y demostrar la efectividad de nuevos diseños de nanopartículas para convertir luz en calor con una eficiencia excepcional. Esto es crucial para aprovechar la energía solar en campos como la microelectrónica, la generación de energía renovable, la biología celular y más.
Uno de los logros más destacados del equipo es la creación de un "nanotermómetro" innovador. Esta herramienta permite evaluar con precisión la eficiencia de los nanosistemas en la conversión de luz en calor, abriendo nuevas posibilidades para la optimización de estos sistemas y su aplicación en diversas áreas tecnológicas y de energía renovable.
Matías Herrán, egresado de la Universidad de La Plata y parte del grupo de Nanomateriales para Energía de la Universidad de Munich, enfocó su tesis de doctorado en el desarrollo de nanomateriales para la fotosíntesis artificial. Estos nanomateriales, que combinan oro y paladio en diferentes geometrías, se han revelado como una solución prometedora para aprovechar la energía solar en reacciones químicas y potenciar la energía renovable.
El proceso implica que las nanopartículas de oro actúan como antenas, concentrando la luz en espacios diminutos. Luego, el paladio, que actúa como un catalizador, convierte esta energía lumínica en calor. El equipo demostró que el aumento de temperatura está fuertemente influenciado por la disposición del paladio alrededor del oro, lo que abre la puerta a un control preciso de la generación de calor y al uso más efectivo de la energía renovable.
Para medir la temperatura en estos objetos nanométricos, el equipo construyó un microscopio especializado capaz de analizar la luz emitida por cada nanopartícula, proporcionando información sobre su temperatura. Esta innovación permitió a los investigadores estudiar cómo se calientan las nanopartículas en diversas condiciones y geometrías.
La investigación no solo avanza en el conocimiento fundamental de la nanotecnología, sino que también promete contribuir al desarrollo de catalizadores más eficientes para una variedad de reacciones químicas y aplicaciones en nanotecnología y energía renovable. Además, resalta la importancia de la organización espacial de los materiales en la nanoscala, demostrando que incluso composiciones idénticas pueden tener propiedades muy diferentes según su disposición.
Los investigadores señalan que estos avances tienen un potencial significativo en campos como la producción de hidrógeno verde, combustibles renovables y almacenamiento de energía en baterías. La colaboración entre instituciones y países ha sido esencial para este logro, y se espera que estos hallazgos continúen inspirando investigaciones y desarrollos futuros en el ámbito de la nanotecnología y la energía renovable. Con la reciente inauguración de un laboratorio de óptica en el Instituto de Nanosistemas de Unsam, el camino está preparado para llevar estos avances un paso más allá hacia aplicaciones prácticas y revolucionarias en el futuro de la energía renovable.